GUÍA 4B QUÍMICA 63 01/83 01 AÑO 2020 PROBLEMA 4

El magnesio metálico reacciona con el dióxido de carbono gaseoso, dando como productos carbono sólido y óxido de magnesio sólido. En la reacción se liberan 17.6 kJ por gramo de Mg metálico que se consume.

- a) Escribir la ecuación termoquímica y calcular la variación de entalpía asociada a la transformación.
- b) Calcule la cantidad de calor que se desprende por cada gramo de productos.

Resolución

a) Por la tabla periódica sabemos que la masa atómica del magnesio es 24,3 uma por lo tanto 1 mol Mg= 24,3 gramos luego 2 moles Mg= 2*24,3 gr= 48,6 gr

1gr de magnesio consumido	libera	17,6kj
48,6gr de magnesio(2 moles)cons	sumidosliberan	855,36kj

Ecuación termoquímica

$$2Mg(s) + CO_2(g) \rightarrow 2MgO(s) + C(s)$$
 $\Delta H^0 = -855,36kj$

Se interpreta

Cuando reaccionan dos moles de magnesio metálico con un mol de dióxido de carbono gaseoso para producir dos moles de óxido de magnesio sólido y un mol de carbono sólido se liberan 855,36kj de energía.

b) masa atómica del oxígeno 16uma, masa atómica del carbono 12uma

Masa total de productos = 92,6gr